The Invariant Subspace Problem

نویسنده

  • B. S. Yadav
چکیده

Heeft elke begrensde lineaire operator, werkend op een Hilbert ruimte, een niet-triviale invariante deelruimte? Het antwoord is positief voor zowel eindig-dimensionale ruimtes als voor niet-separabele ruimtes. Het onopgeloste probleem voor het geval daar tussenin, dus voor separabele Hilbert ruimtes staat bekend als het invariante deelruimte probleem. Professor B.S. Yadav van de Indian Society for History of Mathematics in Delhi heeft de afgelopen 25 jaar veel over het onderwerp gepubliceerd en geeft hier een historisch overzicht.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak*-closed invariant subspaces and ideals of semigroup algebras on foundation semigroups

Let S be a locally compact foundation semigroup with identity and                          be its semigroup algebra. Let X be a weak*-closed left translation invariant subspace of    In this paper, we prove that  X  is invariantly  complemented in   if and  only if  the left ideal  of    has a bounded approximate identity. We also prove that a foundation semigroup with identity S is left amenab...

متن کامل

The Invariant Subspace Problem and Its Main Developments

The famous mathematician and computer scientist J. von Neumann initiated the research of the invariant subspace problem and its applications. In this paper, we discus the invariant subspace problem and its main developments. In particular, we discus some open sub-problem of the invariant subspace problem.

متن کامل

Ja n 20 09 AN ANSWER TO THE INVARIANT SUBSPACE PROBLEM

To answer to the invariant subspace problem, we show that every transcendental operator has a non-trivial invariant subspace.

متن کامل

Has a Non - Trivial Invariant Subspace

In this paper, to solve the invariant subspace problem, contraction operators are classified into three classes ; (Case 1) completely nonunitary contractions with a non-trivial algebraic element, (Case 2) completely non-unitary contractions without a non-trivial algebraic element, or (Case 3) contractions which are not completely non-unitary. We know that every operator of (Case 3) has a non-tr...

متن کامل

The Invariant Subspace Problem

The notion of an invariant subspace is fundamental to the subject of operator theory. Given a linear operator T on a Banach space X, a closed subspace M of X is said to be a non-trivial invariant subspace for T if T (M) ⊆M and M 6= {0}, X. This generalizes the idea of eigenspaces of n×n matrices. A famous unsolved problem, called the “invariant subspace problem,” asks whether every bounded line...

متن کامل

On the Structure of the Spectral Radius Algebras

We study the spectral radius algebras associated to compact operators and we give some sufficient conditions for membership in them. Since it is known that each such algebra has an invariant subspace this leads to some new invariant subspace theorems. We will also compare our method with several well known approaches to the invariant subspace problem. MSC (2000): Primary 47A65; Secondary 47A62,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005